Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(4R,9S)-4-Hydroxymethyl-3,8-dioxa-1,6-diaza-spiro[4.4]nonane-2,7-dithione monohydrate

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.130$
Data-to-parameter ratio $=8.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Gianluca Cioci, ${ }^{\text {a }}$ Nicolas
Leconte, ${ }^{\text {b }}$ Arnaud Tatibouët, ${ }^{\text {b }}$ Patrick Rollin, ${ }^{\text {b }}$ Serge Pérez ${ }^{\text {a }}$ and Anne Imberty ${ }^{\text {a }}$ *
${ }^{\text {a }}$ CERMAV-CNRS (affiliated to Université Joseph Fourier), BP 53, 38041 Grenoble CEDEX 9, France, and ${ }^{\text {b }}$ ICOA-UMR 6005, Université d'Orléans, BP 6759, F-45067 Orléans, France
Correspondence e-mail: imberty@cermav.cnrs.fr

th:/journals.iucr.orge.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram for (I), with hydrogen bonds indicated as dashed lines.

Experimental

The title compound was prepared in quantitative yield according to the procedure described by Saul et al. (2000). The reaction gave a mixture of two diastereoisomers in the ratio $85: 15$, from which the major compound crystallized in pure form. Suitable crystals of (I) were obtained by recrystallization from water (m.p. 442-447 K). Spectroscopic analysis: $[\alpha]_{D}=+22(c=1.0 ; \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, δ, p.p.m.): $3.71\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.62\left(d, 1 \mathrm{H},{ }^{2} J=\right.$ $11.3 \mathrm{~Hz}, \mathrm{H} 8 A), 4.66\left(d, 1 \mathrm{H},{ }^{2} J=11.0 \mathrm{~Hz}, \mathrm{H} 8 B\right), 4.80\left(t, 1 \mathrm{H},{ }^{3} J=\right.$ $5.8 \mathrm{~Hz}, \mathrm{H} 4), 5.30(s, 1 \mathrm{H}, \mathrm{OH}), 10.91(s, 1 \mathrm{H}, \mathrm{NH}), 10.97(s, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, δ, p.p.m.): $57.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 76.0(\mathrm{C} 8), 81.3(\mathrm{C} 9)$, 85.1 (C4), 186.9 (C2 or C6), 188.0 (C2 or C6); MS: $m / z 221[M+\mathrm{H}]^{+}$; high-resolution MS, calculated for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: 219.9976; found: 219.9989.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=238.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.036(2) \AA$ 。
$b=10.336$ (3) A
$c=13.814(3) \AA$
$V=1004.6(5) \AA^{3}$
$Z=4$
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
\quad diffractometer
ω scans
Absorption correction: none
1164 measured reflections
1164 independent reflections
1150 reflections with $I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 24
reflections
$\theta=20.2-23.5^{\circ}$
$\mu=4.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.7 \times 0.2 \times 0.2 \mathrm{~mm}$
$\theta_{\max }=75.0^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 12$
$l=0 \rightarrow 17$
2 standard reflections every 120 reflections intensity decay: 3.1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.130$
$S=1.08$
1164 reflections
136 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0629 P)^{2}\right. \\
& \quad\quad 0.1989 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) ; \text { no } \\
& \text { Friedel pairs } \\
& \text { Flack parameter }=0.04(3)
\end{aligned}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O11-H11 $\cdots \mathrm{O} 12$	0.82	1.94	$2.746(4)$	169
N5-H5 \cdots O12 $^{\mathrm{i}}$	0.86	1.99	$2.791(4)$	155
O12-H121 $^{\mathrm{S}} 6^{\mathrm{ii}}$	$0.84(2)$	$2.45(3)$	$3.234(3)$	$156(5)$
O12-H122 $^{\mathrm{O}} \mathrm{O}_{1} 1^{\mathrm{i}}$	$0.83(4)$	$1.86(2)$	$2.685(4)$	$178(5)$

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were initially located in a difference Fourier map. Atoms H121 and H122 were refined freely. All other H atoms were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97-0.98 \AA, \mathrm{O}-$ $\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$ or $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. Although there were no Friedel pairs, the absolute configuration could be determined unambiguously.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

GC was suppported by an EEC postdoctoral grant (HPRN-CT2000-00001). The excellent assistance of Christian Philouze is acknowledged.

References

Allen, F. A., Bird, C. M., Rowland, R. S. \& Raithby, P. R. (1997). Acta Cryst. B53, 680-695.

organic papers

Crimmins, M. T., King, B. W., Tabet, E. A. \& Chaudhary, K. (2001). J. Org. Chem. 66, 894-902.
Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Girniene, J., Apremont, G., Tatibouët, A., Sackus, A. \& Rollin, P. (2004). Tetrahedron, 60, 2609-2619.

Girniene, J., Tatibouët, A., Sackus, A., Yang, J., Holman, G. D. \& Rollin, P. (2003). Carbohydr. Res. 338, 711-719.

Saul, R., Kern, T., Kopf, J., Pinter, I. \& Köll, P. (2000). Eur. J. Org. Chem. pp. 205-209.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst 36, 7-13.

